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A Uniqueness Theorem for Ordinary Differential Equations,
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Abstract. “The uniqueness theorem of this paper answers an

open question for a system of differential equations arising in

a certain n-body problem of classical electrodynamics. The

E_..

essence of the result can be 1llusfrated using the scalar proto-
type equation x' = gl(x) + gz(t + x) with x(0) = 0.

solution of the latter will be unique provided g, and 85 are

continuous positive functions of bounded variation.
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The theorem proved in thls paper presents a c¢riterion
weaker than a Lipschitz condition which assures unlqueness of
solutions of a system of ordinary differential equations. It
was designed to resolve an open question in classical electro-
dynamics described at the end of the paper.

Before stating the theorem let us 1lllustrate it with two
scalar examples typifyling the problems we had in mind. These
examples are easlly treated with the theorem which follows.

We are unaware of any previous uniqueness theorem which would

handle them or the electrodynamics problem of Example 3.

Example 1. If 8, and g, are continuous positive
functions of bounded variation on an open interval contalning
0, then the equation

x' = gl(x) + gz(t + x) with x(0) =0

has a unique solution on some open interval containing 0.

Example 2. The equation

5/3)1/3

x' = (¢t + x for t >0 with x(0) =0

has a unigque solution.

The theorem itself treats a system of n ordinary

differential equations

(1) x' = f(t, X)AIR FORGCE e g
Yo HEREDE GF SRNESIR R IPRTETN
VOTICE OF « on 1ovr 2 1SNTI®IC REspaRa "
with initial conditions : ;,OSF,_“5~*“~IrTO Bog ARCH (4Arse,
S O
Gt oved e L TerE R heen peyvi
(2) x(ty) = x4. vved S puiiic relegs tved ang 14

istributiog gg _ © 1AW AFR 130-
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"echnieal Information Offiger




e —
Th W -

-3-

Let S be a subset (not necessarily open) of Rn+l,
and let f: S -+ R". Then, given (to, xo) € S, a solution of
Egs. (1) and (2) is defined as any differentiable function

X on an interval J such that (t, x(t)) € S and

x! f(t, x(t)) for t € J, while toé J and x(to) = x4.
(If J contains either of its endpoints, x'(t) 1s a one-sided
derivative there.)

The norm used in this paper for a vector & € R® 1is

= N
el = i1 Igil'

Theorem. Let f: S + R? be continuous and satisfy the
following condition. Each point in S has an open neighbor-
hood U, a constant K > 0, an integer m > 0, -and functions

hJ and 53 for § =1, ..., m such that )

m
(3) |If(t,g) = £(t,m)|| < K|]E- n]|+ K I Isj(hj(t,ﬁ))-sJ(hJ(t,n))l
J=1

on UMN S, where hJ: U + R 1s continuously differentlable

with
3h,(t,£) n 23h,(t,§)

2
O Tl _%‘11_ £,(6,6) £0 on UAS

and each gJ: R + R is continuous and 1s of bounded variation

e

on bounded subintervals. Then Eqs. (1) and (2) with any point

(ty» x5) € S have at most one solution on any interval J.

]
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Remarks. The theorem of course does not guarantee the
existence of a solution on a nontrivial interval J. Existence
would follow, for example, if S were open.

To treat Example 1, define hl(t, E) = £ and hz(t, £)
= t + £. For Example 2, let h(t, ) =t + ;5/3 and g(g) = 51/3.
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Proof of the Theorem. Suppose there were two different

solutions, x and y, on some interval J = [to, b) where
b >t . (The case J = (b, ty] 1s handled similarly.) Let
a = inf {t € (tgs> b) = x(t) # y(t)}.

Then x(a) = y(a). |

For the point (a, x(a)) € S let U, K, m, hJ, and gy be
as described in the hypotheses of the theorem. Without loss
of generality, assume that for each j the expression in (4)
i1s positive at (a, x(a)). Then, reducing U 1if necessary,
the continuity of the derivatives of hJ assurés that there

exist positive constants p and M such that for jJ =1, ..., m

dh,(t,8) " 3h,(t,E)
(5) ——1—3——-+ _—JTE—f (t,E) >p on UAMS
o a g 1
and

N~

(6) IhJ(’c,E) - hJ(t,n)l < Mg -nll] on U.

Choose a bounded interval [aj, BJ] which contains hJ(Uf\S),

reducing U 1f necessary. Then gJ 1s the difference of two

h MR ML T T e e

continuous non-decreasing functions on [“J’ BJ]’ and each of
the latter can be extended to a continuous non-decreasing
function on R by defining it to be constant on (-=, “J] and
constant on [BJ’ »). Without loss of generality, we shall assume
that each gJ is itself non-decreasing on R and that
(7)) gJ(hJ(a, x(a))) = 0.

Define

t

Mﬂ*[ [|x'(s) - y'(s)|| ds for a <t <b.
a

Then z(a) = 0, z'(a) = 0, z and 2z' are continuous,

z'(t) > 0, and ||x(t) - y(t)]| < z(t) on [a, D).
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Choose ¢ € (a, b] sufficiently small so that (s, x(s))
and (s, y(s)) remain in U for a < s < c. Then, from (6),
hd(s, x(s8)) - Mz(s) jhj(s, y(s)) < hJ(s, x(s)) + Mz(s)

and, from (5),

$5 hy(s, x(s)) 2 p

for a<s<c¢ and J =1, ..., m.

Thus for a < t < ¢, using (3) and the monotonicity of each gy

t m
z(t) < K [ {||x<s) - y(s)|| + jlegJ(hJ(S,X(S)))-SJ(hJ(S,Y(S)))I}dS‘
a =

m ,t :
b I [gj(hj(s,x(S)) + Mz(s))
j=1la

< K(t - a)z(t) +

o=

- gj(hJ(s,x(s)) -Mz(s))] Sg hJ(S.X(S)) ds

n hj(t,x(t))+Mz(t)
= K(t -~ a)z(t) + = ¢ I g,.(u) du

=1 hy (t,%(t))-Mz(t)

T|>=

m t
S B I J, sy teaxenama(e)) 4y (ny (ax(0))Me(2)) ! ()00

Choose 61 > 0 such that for each J
i -
|gJ(u)| < zexm When |u hj(a,x(a))l <5,

Then choose 6§ € (0,1/6K) such that a + 8§ < c and,for each J,

IhJ(t,x(t)) - hJ(a,x(a))l + Mz(t) < & when a <t <a + &

1
Now for a <t <a + 8 one finds 2z(t) < 5z(t)/6. This

contradiction completes the proof.

The motivation for this paper was the following problem

from classical electrodynamics.
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Example 3. Consider n electrically charged point
particles moving along the x-axis at distinct positions,
xl(t), X5(t)y «vvy xn(t). Assume that the motion of particle
J depends only on the electromagnetic flelds produced by
the other n-1 particles, with these fields traveling to
particle Jj at the speed of light, c.

The required fields are calculated in terms of the
trajectories of the other particles from the retarded
Lifnard-Wiechert potentials; and they are subétituted into
the Lorentz force law for particle' J. Introducing vy = xi/c
for the velocity of particle 1 as a multiple of ¢, one
obtains a system of delay differential equations with state-

dependent delays:

8) vi ; KiJ + vi(t - ?111 ’
(1 2)3/2 1#] r1J Oy = vi(t - rij)

where each KiJ is a constant, 9g5 = sEn [xJ(O) - x (M),

and where riJ > 0 satisfies

vy - vi(t - rii)

(9) riJ = for 1 #).

Tgg = v4(t = 1y4)

In these equations vy and riJ without an argument stand
for vi(t) and rij(t)‘

2 equations represented

In ofder to solve the system of n
by (8) and (9) when ¢t > 0, one should know not only

vJ(O) and riJ(O) for all J and all 1 ¥ j,

but also the values of vi(t) for t <0, 1=1, ..., n.
Now consideration of the problem in three-dimenslonal

motion has led to the conclusion that accelerations should not

¥R VI N
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be assumed continuous, but only integrable [2]. Thus it seems
reasonable even in the case of one-dimensional motlon to assume
that the given past history of vy say

(11) vy(t) = gg(t) for t <0 (1=1, ..., n)

is merely absolutely continuous--not, in general, locally
Lipschitzian.

Substituting (11) into the right hand sides of Egqs. (8)
and (9) one gets a system of ordinary differential equations
which satisfles the uniqueness criterion of the presedt paper.
Thus a unique solutlon exists at least as long as each
t - riJ(t) < 0 and each |vJ(t)| < 1. (Further extension
of the solution would use a "method-of-steps" argument which
is not relevant to this paper.)

The above uniqueness problem was solved earlier for the
case of two particles in one-dimensional motion [1]. But the .

method used did not seem to extend to the n-body problem.
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